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1. Introduction 

This paper continues the study of semi-stability at oo for finitely presented groups 
begun in [10], and we continue to examine the question: If G is a finitely presented 
group, is HE(G, 7/G) free abelian? (See [4].) 

Given X, a locally compact, separable metric space and r, s:[0, oo)--,X proper 
maps, then r and s converge to the same end of X if for each compact set C C X ,  
there is an integer N such that r([N, oo)) and s([N, oo)) lie in the same unbounded 
path component of X -  C. An end of X is an equivalence class of maps [0, oo)-,X, 
where r and s are equivalent if they converge to the same end. X is semi-stable at 
oo if maps converging to the same end are properly homotopic. (See [10].) The (car- 
dinal) number of ends, and the semi-stability at oo notions are defined for finitely 
presented groups. If X is a finite CW-complex with l t l (X)= G, then the number of 
ends of G is the number of ends of :~', the universal cover of X, G is semi-stable at 
oo if ) (  is. These concepts are well-defined by the following theorem. 

Theorem. I f  K and L are finite CW-complexes and ~zl(K)= ltl(L), then I( and f ,  
have the same number of  ends, and I( is semi-stable at oo i f  and only i f  f ,  is. 

Proof. See the proof of Theorem 3 of [7]. 

By a theorem in [4], if a finitely presented group, G, is semi-stable at oo, then 
H2(G:~'G) is free abelian. In fact, if X is a finite CW-complex with l t l (X)= G, 
then H2(G : 7/G) will be free abelian iff the following condition is met: Given C a 
compact subset of .~, there is a compact set D C X such that for any compact set 
E C X and loop a in .,Y-D, a is homologous, in X - C ,  to a loop in X - E .  
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The following questions are well known: 

Question 1. Do all finitely presented groups, G, have free abelian second 
cohomology (with ZG-coefficients)? 

Question 2. Are all finitely presented groups semi-stable at oo? 

Question 2 is related to important questions in the study of 3-manifolds, such as: 
Are Whitehead's contractible 3-manifold and open 3-manifolds of similar 

construction [9, 14] universal covers of closed 3-manifolds? (This question is 
examined in [10].) The recent examples of Davis [3] in dimensions _>4 do not settle 
Question 2. 

Now we state our results. Let N(A) denote the normal closure of the subset A of 
the group G. 

Main Theorem. Let G be a finitely presented group with generators (x, hl, ... ,hn, 
k l , . . . , k m ) .  Let H and K be the subgroups o f  G, generated by (hl , . . . ,hn)  and 
(kl, ..., kin) respectively. Assume: 

(j) H and K are finitely presented. 
(ii) G/N(HUK)=-Z.  

(iii) xHx - 1 C H  and x-IKxcK. 
Then G is either 1 or 2-ended and G is semi-stable at oo. 

Theorem 3.1. I f  H is a 1-ended finitely presented group and ~p :H-- ,H is a 
monomorphism, then the HNN-extension [H : H, ~] is simply connected at o o .  

For the definition of HNN-extension see [8, p. 179]. A finitely presented group, 
G, is simply connected at co if some (equivalently any) finite complex, X, with 
rq(X) = G has the property: Given a compact set, C, in `8, there is a compact set 
D C`8, such that any loop in . 8 -  D is homotopically trivial in ` 8 -  C. Theorems in 
[5] and [6] show that if the ~ of Theorem 3.1 is an isomorphism, then G is simply 
connected at oo. 

Theorem 3.2. I f  1-11 and HE are 1-ended finitely presented subgroups o f  the finitely 
presented group G such that HI and H2 are semi-stable at o% H1 t3 H2 generates G 
and 1-11 ffl H2 contains a finitely generated infinite group, then G is semi-stable at oo 

and 1-ended. 

2. A question about knot groups 

All knot groups (with the exception of the trivial knot) are 1-ended [11], with 
abelianization 7/. A Weirtinger presentation for a knot group, G, leads to a presenta- 
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tion of G with generators x, gl, g2,-.., gn: where G / N { g l , . . . ,  gn} = Z. By Scott's 
theorem [ 13], finitely generated subgroups of compact 3-manifold groups are finite- 
ly presented. Hence, if one were to search for a knot group satisfying the hypothesis 
of our main theorem, condition (i) could be relaxed to: H and K are finitely 
generated. If the commutator subgroup, C, of a knot group, G is finitely generated, 
then the hypothesis of our theorem is satisfied with H = K-- C. We have no example 
of  a knot group, G, satisfying the hypothesis of our theorem or of one failing to 
satisfy the hypothesis of our theorem, if the commutator subgroup of G is not 
finitely generated. R.H. Crowell and E.M. Brown [2] prove an interesting theorem 
which implies the following: If G is a knot group with non-finitely generated com- 
mutator subgroup, C, then the hypothesis of our theorem cannot be satisfied with 
N ( H )  = C or N ( K )  = C. 

Such an example would be a so-called lobster po t  knot.  These knots cannot exist 
by [2]. Finally, a large Iist of knots with non-finitely generated commutator 
subgroup can be identified by a process described on p. 326 of [12]. 

3. A preliminary theorem 

Theorem 3.1 is proved by using elementary ideas that also appear in the proof 
of  the main theorem. Hence, it provides an introduction to the more sophisticated 
ideas and techniques of our main theorem. Now we provide a setting to prove our 
theorem in.  Given a presentation p = ( g l , . . . , g n  : rn, . . . , rm) of a group G, one 
builds the standard 2-complex, Xp,  with ltl(Xp)=G a s  follows: There is a single 
vertex, . .  For each generator, gi, attach a loop at , .  Now attach 2-cells to these 
loops according to the relations r i. Let ~'p be the universal cover of Xp. X'p can be 
constructed as follows: There is one vertex for each element of G, and an edge be- 
tween vertices o and w if ow -1 ~ {g~:l, . . . ,  g~l  }. This is the 1-skeleton of .~p. 2-cells 
are attached according to the relations ri (see [6]). The edges of ,~p correspond to 
the group elements (g~:l, ..., g~l). An edge path (el, ..., e k ) o f  .~p corresponds to 

I t t . .  

( e l , . . .  , ek) where ei e { g ~ l , . ,  g~l } but to obtain a direct correspondence between 
edge paths 
itial point 
<'  el ,  . . . ,  
a covering 

and the corresponding list of generators, it is necessary to specify the in- 
of (el, . . . ,ek), when referring to (el, ...,e~), since at any vertex o, 
determines an edge path (that differs from <e~,..., e~) at the vertex w by 
transformation). 

Theorem 3.1. I f  H is a 1-ended f ini tely  presented  group and ¢ : H - ~  H is a mono-  

morph i sm,  then the HNN-ex tens ion  [H : H,  ~] is s imply connected at co. (See [8, 
p. 179] f o r  the defini t ion o f  [H: H, ¢].) 

Proof. Assume (hi, ..., hn : rl, . . . ,  rm) is a presentation of H. Then the desired 
HNN-extension, G, has a presentation (x, h i , . . . ,  hn : r l , . . . ,  rm, x h i x -  l = tp(hi) for all 
i e { 1, ..., n}) (here we a s s u m e  ¢(hi) is a word in the letters h~ =l, +l • . . ,  hn ). Let X and 
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Y be the standard 2-complexes obtained from the above presentations of G and H 
respectively. By Britton's lemma (see [l, p. 20]) the map ~ : H - ~ G  defined by 
~(h i )  = h i for i t  {1, ..., n} is a monomorphism. Y includes naturally into X, and 
since ~ is a monomorphism, this inclusion induces an injection of nl(Y) into 
7h(X ). Hence for each element of G/H,  there is a copy of I7, the universal cover 
of Y, in ,~, the universal cover of X. These copies of Y are mutually disjoint. N(H)  
is the normal closure of H in G, and G / N ( H )  = 7/. Let ,(0) be a vertex of .~ and 
• (n) be the end point of the lift of x n to .(0). 

If o is a vetex of .~, and rt" .,,Y~.,('/N(H) is projection, then it(o)= rt(,(n)) for 
some integer n, and we say o is in level n of .,~. Furthermore, if W is the copy of 
I? containing o, then we say W is in level n of .,~. As base ray in ,~, we choose the 
proper edge path to oo, r : ([0, oo), {0})~(.,~, ,(0)), such that r restricted to [n, n + 1] 
is the lift of the loop x to ,(n). Let e be an edge of  X, with initial point ,(0), such 
that e corresponds to an element of {h~ 1, ..., h~ 1 }. Since xex -1 = ¢~(e), we say e can 
be slid along x to an edge path with edges in {h~1,..., h~l }. See Fig. 1 

) ) 

*(0)  e 

Fig. 1. 

In .~, a 2-cell is attached to the loop of Fig. 1 since xex -1 = ~p(e) is a defining rela- 
tion. Similarly, each edge of ¢(e) can be slide along x, hence, for any n > 0, e can 
be slid along the edge path ( x , . . . , x ) - x  n at ,(0), to an edge path with edges in 
(h~:l, +1 • .., hn ). For each k > 0 ,  let M(k) be an integer such that each edge of 
{h~ 1, ..., hn ~1 } at ,(0) can be slid along x k with image in stMtk)(*(O)). Let C be a 
compact subcomplex of X. C meets only finitely many levels of .~. Choose integers 
A and B such that all levels above level B and all levels below level A (including 
levels A and B) miss C. Let D = stM(B-A)(C). 

Lemma 3.2. If  e~{h~l , . . . ,h~ 1 } is an edge o f  X - D ,  and e lies in level Q, where 
Q >_A, then e can be slid along x t, f o r  any t > 0 by a homotopy missing C. 

Proof. By the definition of M ( B - A ) ,  e can be slid along the first B - A  edges of 
x t, missing C. The resulting edge path in the letters {h~ =1, ..., hn ~1 } is above level B, 
and hence can be slid along the remaining edges, missing C. 

Next we prove: If H is 1-ended, then G is simply connected at oo. Let D l be a 
compact set containing D such that if DI meets a copy of 17, the complement of D1 
in this copy of 17 has one unbounded path component. Let 2 be an edge loop in 
~ ' - D l .  If an edge of A, corresponding to an element of {h~ :1, -l-1 • .., hn } lies in a 
level below level A, slide it up to level A. Eliminating pairs of edges of the form 
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<X, X- 1) or <x- 1, X) we have A is homotopic in . ~ -  C to an edge loop A1, and each 
edge of A l lies in level A or a level above level A. Furthermore since the homotopy 
of A to A l did not affect edges of 2 above level A, if a is an edge of 21 correspond- 
ing to x, joining levels A and A + 1, then the initial point of a misses Dl.  Hence if 
B is a maximal subpath of 21 in the letters {h~:l, . . . ,  h~ 1 }, with image in level A of 
X, then the initial and end points of B are in . ~ - D I .  B lies in a copy of 17, call it 
W, and by hypothesis W - D ~  is connected. Join the initial and end point of B by 
an edge path, •, missing D 1, with edges in {h~ l, . . . ,  h~ l }. Since W is simply con- 
nected and misses C, B is homotopic rel{0, 1 } to/~, by a homotopy missing C. Hence 
21 is homotopic in ) ( -  C to an edge loop, ~,, such that each edge of y from the set 
{h~ 1, . . . ,  h~ 1 } misses Dl and lies in level A or a level above level A. By the defini- 
tion of D cD~ all edges of ), can be slid to a level above level B, by a homotopy 
missing C. The resulting edge loop lies in some copy of Y, missing C and hence is 
trivial there, by a homotopy missing C. 

The next theorem can be done by standard techniques found in [6] or [10]. 

Theorem 3.2. I f  HI and H2 are 1-ended finitely presented subgroups o f  the finitely 
presented group G, such that H 1U HE generates G, H1 and H 2 are semi-stable at 
and H l N H2 contains a finitely generated infinite group, then G is 1-ended and 
semi-stable at ~ .  

4. The main theorem 

Our main theorem (see Section 1) is an easy corollary to Theorem 3.2 and the 
following: 

Theorem 4.1. Let H be a finitely presented subgroup o f  the finitely presented group 
G. I f  there is an element x ~ G such that, H t3 {x} generates G, xHx  -1 C H and 
G/N(H)  = Z, then G is semi-stable at o0 and 1 or 2-ended. 

Proof.  If H is finite, then xHx  -1 = H  and G is a group extension of a finite group 
by the integers. Theorem 3.3 of  [10] shows G is 2-ended and semi-stable at m. Let 
(h i , . . . ,  hn :rl, ..., ra) be a presentation for H. Let P =  (x, h i , . . . ,  hn : t l ,  . . . ,  tc) be a 
presentation of G where r i ~ { t l , . . . ,  tc} for i e  { 1, . . . ,  a}, and xhix-lt~i ~. {ti,...,  tc} 
where ai is a word in the letters {hi  1, . . . ,h~ 1 }. Let Y and X be the standard 
2-complexes with 7 t l ( Y ) = H  and n l (X)= G obtained respectively from the above 
presentations. As in the proof  of  Theorem 3.1, let .(0) be a vertex of )(, and ,(n) 
the end point of the lift of the loop x n, of X to .(0) ~ ,~  for any integer n. Further- 
more, define vertices of .~ and copies of  I7 which lie in .~, to be in level n of  .~ as 
defined in Theorem 3.1. As base ray, we choose the proper edge path to ~ ,  
r :  ([0, ~) ,  {0})~(.~,*(0)) such that r restricted to [n, n +  1], for n_>0, is the lift of 
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x to ,(n). For each i > 0 ,  let M(i)  be an integer such that each edge of {h~ :1, . . . ,  h~ 1 } 
can be slid along x i with image in stM(i)(*(0)). 

Let C be a compact  subcomplex of.,~. Choose integers A and B such that all levels 
above level B and all levels below level A (including levels A and B) miss C. 

Lemma 4.2. I f  e e  {h~ 1, . . . ,  h# 1 } is an edge o f  X - s t M ( S - A ) ( C )  and e lies in level Q, 
where Q > A,  then e can be slid along x t, f o r  any t >_ O, by a homotopy missing C. 

Proof. See Lemma 3.2. 

If h ~ H ,  then h has degree i > 0  (deg(h)=i) if i is the largest integer such that 
h =xiFtx -i for some ~ e H .  If no such largest integer exists, then deg(h)= oo. 

If deg(h) = d <  oo, then xdfiX -d = h for some/~e H. Hence for any p ~ {0, 1, . . . ,  d}, 
xP]~x-P=h where ]~=xd-P~x(P-d)EH, and we have: 

Lemma 4.3. I f  deg(h)=d>_O, then f o r  each i t { 0 ,  1 , . . . ,d}  h=xipi X-i f o r  some 

Pi ~H.  

If (a, b) is a pair of  vertices of .~ and the covering transformation of .~ that takes 
a to b corresponds to h ~ H, then we say deg(a, b) = deg(h). The following lemma is 
a key step in bridging the algebra and the desired geometry. 

Lemma 4.4. Assume  E is a compact subcomplex o f  .~, and Q is a copy o f  Y, in ,~. 
I f  w and L are distinct unbounded path components o f  Q - E ,  then one o f  the 
following two statements must  hold: 

(i) W x L contains a collection o f  pairs o f  vertices (Ol, wl), (02, w2),.., such that 
all vi are distinct and all wi are distinct, and deg(oi, wi)> i, or 

(ii) there are f in i te  sets o f  vertices SC  W and T C L  such that all pairs o f  vertices 
o f  ( W -  S) x (L - T)  have degree less than some positive integer NI(W, L). 

Proof.  Begin selecting pairs of vertices (oi, wi) satisfying the hypothesis of (i). If for 
some i > 1, (vi, wi) cannot be selected to satisfy this hypothesis, then either all pairs of 
vertices of W x L have degree less than or equal to maxl<yS~ deg(vj, wj) or all pairs 
of  vertices (o, w) ~ W x L with degree > i have o e {vl, .. . ,  oi- 1 } or w ~ { w l , . . . ,  wi_ 1 }. 
In the former situation S = T = O  and Nl(W,L)=maxl<js i{deg(v j ,  wj)}. In the 
latter situation S = {vl , . . . ,  vi_ 1 }, T= {Wl,..., wi_ 1 } and N1 (W, L) = i, completing 
the proof. 

Since E is compact ,  it meets only a finite number of copies, Q, of I7. Also, for 
each such Q, Q -  E has only a finite number of unbounded path components. Thus, 
there are only a finite number of pairs (W, L) where W and L are distinct unbounded 
path components of  Q - E .  

We list these pairs as (W1, L1), (W2, L2), ..., (Hip, Lp). If condition (i) of Lemma 
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4.4 holds for (Wj, Lj), let Sj= T j = 0  and N j = 0 .  If condition (ii) of Lemma 4.4 
holds for (Wj, L j), let Sj and Tj be the finite sets of vertices defined in condition (ii) 
of Lemma 4.4 and let Nj=-NI(Wj, Lj), also defined in Lemma 4.4. Finally, let 
Sl(E)=[.J~l(Sj12 Tj) and let Nl(E)=maxl<_j<_p{Nj}. Note that SI(E) is a finite set. 

The proof of the next lemma is analogous to that of Lemma 4.4 and left to the 
reader. 

Lemma 4.5. Assume E is a compact subcomplex o f )?  and Q is a copy o f  17, in )?. 
I f  w is an unbounded path component o f  Q - E and o is vertex o f  Q fi E or a bound- 
ed path component o f  Q - E ,  then either: 

(i) W contains a collection o f  distinct vertices ol, 02, ... such that deg(oi, o)>i 
or,  

(ii) there is a finite set o f  vertices SC W such that for  any vertex w ~ W - S ,  
deg(w, o) is less than or equal to some integer N2(W, o). 

A compact set E meets only a finite number of copies of 17, in )?. Also if Q is 
a copy of 17 in )?, then E union all bounded path components of Q - E  is compact. 
Hence there are only a finite number of pairs (W, o) where W is an unbounded path 
component of Q - E ,  and o is a vertex of either Q f i E  or a bounded path component 
of  Q - E .  We list all such pairs as: (W 1, 01), (W2, 02), ... ,(Wpop). If condition (i) of 
Lemma 4.5 holds for (Wj, oj), we let Sj =0, and N j = 0 .  If condition (ii) of Lemma 
4.5 holds for (Wj, oj), we let Sj be the finite set of vertices defined in (ii), and 
Nj=N2(Wj, o) also defined in (ii) of Lemma 4.5. Finally, let S2(E)= ~ Sj and 
N2(E)= MaXlsj<_p {Nj}. 

Lemma 4.6. Assume E is a compact subset of)?, and Q c ) ?  is a copy o f  17. I f  o and 
w are vertices o f  ( E f i Q ) U { x [ x  is an element o f  a boundedpath component o f  
Q - E ) ,  then either 

(i) deg(o, W) is o% or 
(ii) there is a positive integer N3(o, w) larger than deg(o, w). 

Proof. Trivial. 

There are only a finite number of pairs (o, w) such that Q is a copy of I 7 in )?, 
and, o and w are vertices of (Q f iE)  12 {x lx  is an element of a bounded path compo- 
nent of Q - E } .  We list these pairs as (ol,wl),(o2, WE), ..., (Op, Wp). If 
deg(oi, wi) = m, let Ni =0.  If deg(oi, wi) is finite, let Ni be an integer larger than this 
number. Let N3(E) = Maxl<i< p {Ni}. 

Recall C is a compact  subcomplex of)? .  A and B are integers such that C is below 
level B and above level A. Choose C1 a compact subcomplex of )? containing 
stMtB-A)(C) and such that if Q is a copy of 17, then the 1-skeleton of Q - C 1  is a 
union of unbounded path components. Let N1 be the Nl (C  l) defined following 
Lemma 4.4 let C2 be compact and contain C1 and Sl(Cl). (SI(C1) is defined follow- 
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ing Lemma 4.4.) Furthermore choose (72 such that the one skeleton of  the compli- 
ment of (72 in any copy of  Y is a union of unbounded path components. 

Let N2 be the N2(C2) defined following Lemma 4.5. Let C3 be a compact sub- 
complex of ,~ containing (72 and $2(C2). Furthermore, choose (73 such that the 
1-skeleton of the compliment of C3 in any copy of I? is a union of  unbounded path 
components. Let N3 be the N3(C3), defined following Lemma 4.5. Let 
N=max{Ni ,N2 ,N3} .  By the definitions of NI,N2,N3 we have: 

Lemma 4.7. Let e be an edge o f ) (  corresponding to an element o f  {h~ l, . . . ,h~ 1 } 
in level L o f  ,~ where L <_A-N.  I f  k>O is such that (x-k,e,x k) has end points in 
level A, then these end points lie in the same copy o f  Y, call it Q. (e can be slid along 
x k to an edge path in the letters {h~l,..., h~ 1 } joining them.) Also exactly one o f  
the following hold: 

(i) Both end points lie in C2, in which case the degree o f  this pair o f  vertices is 
infinite (by the definition o f  N3). 

(iia) The initial point o f  (x -k, e, x k) lies in C2, and the end point o f  (x -k, e, x k) 
lies in W, an unbounded path component o f  Q -  C2. 

(iib) The end point o f  (x -k, e, x k ) lies in C2, and the initial point o f  (x -k, e, x k ) 
lies in W, an unbounded path component o f  Q-C2.  

In both cases, (iia) and (iib), W contains a collection ol, 02, ... o f  distinct vertices 
such that the deg(oi, u)> i where o is the initial point o f  (x -k, e, x k) in case (iia) and 
o is the endpoint o f  (x-k,e,x k) in case (iib). (See the definition of  N2.) 

(iii) (i), (iia) and (iib) do not hold and both end points o f  (x -k, e, x k) lie in the 
same unbounded path component, W, o f  Q -  Cl. 

(iv) (i), (iia) and (iib) do not hold and the end points o f  (x -k, e, x k) lie in dif- 
ferent unbounded path components o f  Q -  C1. Call these path components W l and 
W 2. In this case W 1 x W 2 contains pairs o f  vertices (07, wl)(o2, w2),.., such that 
ui = oj i f  and only i f  i =j and w i = wj i f  and only if  i =j. Furthermore deg(ui, wi) >- i 
by the definition o f  N1. 

Proof .  Clearly no two of (i), (iia),(iib), (iii) and (iv) can hold simultaneously. If (i), 
(iia), and (iib) fail, then the end points of (x -k, e, x k > must lie in Q - C ~  and either 
(iii) or (iv) must hold. 

Let (74 contain stM(B-A+N)(c3) and be a compact subcomplex of  .g. If l and s 
are the largest and smallest integers respectively such that ,( l)  and ,(s) are in C4 
then assume, without loss, that , (0)e  C4 and , ( i )~  (?4 for s_< i__ 1. By Theorem 2.1 
of  [10] it suffices to show: Let E be compact containing C. Then any edge loop, 
a ,  with image in . ~ -  C4, and based on the proper ray to oo, r = (x, x , . . . )  at ,(0), is 
homotopic rel. r to a loop in . ~ - E ,  by a homotopy missing C. 

Let tr = (el, e2, . . . ,  eu) be an edge loop based at , ( f ) ,  with image in X - C 4  (here 
we assume f > 0 ) .  Choose levels F and F of X such that E and the image of a lie 
below level F and above level F. 
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St M (B-A+N) (C.,)  

St M (B-A) (C) 

m 

, F-level 

, B+N-level 

--B-level 

A-level 

A-N-level 

Fig. 2. 

F-level 

Lemma 4.8. I f  the edge ei o f  a corresponds to an element o f  {h~ :1, . . . ,  h~ 1 } and e i 

has image in level L where L >_A - N ,  then ei can be slid along x t, f o r  any t > O, 
missing C. In particular ei is homotopic rel{0, 1 } to <x (F-L), wi, x -(P-L)> where wi is 
an edge path with letters in the set {h~l, . . . ,  h~l }. 

Proof. Since a misses (74, el misses St M(B-A +N)(c3). Hence e i misses St M(B-A +N)(c 1). 
By the definition of M, ei can be slid along x B-A+N missing C1. Since L > _ A - N ,  
e i can be slid to level B or above missing C1. Since C is below level B, this sliding 
process can continue indefinitely, missing C. 

Note. If the subpaths x ~-L,  and x -(P-L) o f  (X p-L, Wi, X -(P-L)> pierce level A, they 
do so in vertices missing C~. 

If ei ~ {h~ :1, ... ,h~ 1 } and e i is in level L where L < A - N ,  then the end points of 
the edge path <x-(A-L),ei ,  x (A-L)) are in level A. Let the initial vertex of the edge 
path be o and the terminal vertex be w. Then by Lemma 4.7 exactly one of the five 
conclusions of Lemma 4.7 hold for ei. 

If (i), (iia), (iib), (iii) or (iv) of Lemma 4.7 holds we say ei is respectively an edge 
of type (i), (iia), (iib), (iii) or (iv). 

Recall ei is an edge of {h~ =I, . . . ,h~ l } and ei is in level L < _ A - N .  

Lemma 4.9. I f  ei is to type (i), then ei is homotopic rel{0, 1 }, by a homotopy miss- 
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ing C to the edge path (x  -rE-e), w~, x t-F) where w i is an edge path in the letters 
{h~ 1, ... ,h~n I } and image in level F. 

Proof.  The initial and end points of (x  -(a-L),ei, x (A-t)) are o and w respectively 
and lie in C3 by the definition of type (i). By the definition of N3(<N) ,  (o, w) has 
infinite degree. By Lemma 4.3 there is an element wi of H such that 
X-(A-F)wixA-F=x-CA-L)ei  x A - L  (here ei takes on its representation in / - / ) .  Hence 
as elements of H, ei =xL-Pwix  -(L-F). Geometrically this means the edge ei and the 
edge path (x -(~-F), wi, x (L-F)) have the same initial and end points (see Fig. 3). w i 
can be slid along x t - F  to Yi by a homotopy missing C (the homotopy lies below 
level L). Yi is an edge path in the letters (h~ 1, ±l . . . ,  h n ) and lies in level L. Further- 
more Yie~ 1 is a loop in a copy of 17 that lies in level L. Hence Yi is homotopic 
rel{0, 1 } to e i by a homotopy in this copy of 17 which must miss C, completing the 
proof. 

c3 

v\ /w 

m e! 
x i 

w i 

F i g .  3 .  

t A 

L 

Lemma 4.10. I f  ei is an edge o f  type (iia), then ei is homotopic rel{0, 1 }, by a 
homotopy  missing C, to the edge path (x:(~ - F), ai, x (p- V), bi, x - (e -  L)) where b i and 
a i are edges in the letters { h~ l, . . . ,  h~n I } in levels P and F respectively. Furthermore, 
the subpath x -:(p-p) misses E. 

Proof. We use Fig. 4 for guidance. 
If ei is slid along x a -L ,  then the resulting edge path, g, lies in level A and is an 

edge path in the edges {h~:l,..., h~ 1 }. The initial point, o, of g lies in C2 and the 
end point, w, of  g lies in W, an unbounded path component of Q - ( 7 2 ,  where Q 
is a copy of I 7 in level A (by the definition of type (iia)). Furthermore (see 4.7(iia)) 
W contains a collection 01,02, ... of  distinct vertices of  .~, such that deg(oi, o)>_ i. 
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Since E is compact, there is only a finite collection of elements, t, in {ol, 02, ...} 
such that the edge paths x ~-A and x -(n-F) at t meet E. Choose j>_A - F  such that 
x p-A at oj and x -(A-F) at oj miss E. Let d be an edge path from w to oj in the let- 
ters {h~ 1,. . . ,h +1}. Since w and oj are in W, we assume d lies in W. Since 
deg(oj, o ) _ > A - F  there is an edge path ai in the letters {h~ :1, .... , hn I } in the level F 
such t h a t  (x-(A-F),aTII, x A-F) has initial point oj and end point o. Since C lies 
above level A, the slide of ai along x A -F to the edge path h, misses C. h-lgd forms 
a loop in Q. Since Q is a copy of  I 7 missing C, h is homotopic rel{0, 1} to  gd, by 
a homotopy in Q and hence missing C. Thus (x-(A-F),a:tl, X A-F) is homotopic 
tel{0, 1} to (d  -1, g - i ) ,  by a homotopy missing C. Using the fact that C is above 
level A again, we have (x -(A-L), ei, x ~-L) is homotopic to g by a homotopy miss- 
ing C. Combining those two homotopies gives: (x-(A-F),aT~I, xL-F, ei, x A - L )  is 

homotopic rel{0, 1} to d -1. Since d -1 has image in W C ) ( - C 2 ,  d -1 must miss 
C1. By Lemma 4.2, d -1 can be slid along x p-A, missing C, to say bi, an edge 
path in level F in the letters {h~l,... ,hn~l}. I.e. d -1 is homotopic rel{0,1} to 
(x p-n, bi, x -(r-A)) by a homotopy missing C. Combining this with the above homo- 
topy gives (x -(A -F), at1, xL-F, ei" )cA -L)  is homotopic rel{0, 1 } to (x p-A, bi, X - ( p - A )  ) 

by a homotopy missing C. Hence e i is homotopic rel{0, 1 } to (x -(L-F), ai ' xP-F, bi ' 
x -(~-L)) by a homotopy missing C. 

In direct analogy to Lemma 4.10 we have Lemma 4.11. 

Lemma 4.11. I f  ei is an edge o f  type (iib), then ei is homotopic rel{0, 1}, by a 
homotopy missing C, to the edge path (x p-L, ai, x -(p-F}, bi, x L-F) where ai and b i 
are edge paths in the letters {h~l, ...,  h~ 1 } in levels P and F respectively. Further- 
more the subpath x -(F-F) misses E. 
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Lemma 4.12. I f  ei is an edge o f  type (iii), then ei is homotopic rel{O, 1}, by a 
homotopy missing C, to the edge path <x it- L, wi, X -(P- ~)> where w i is an edge path 
in the edges <h~ 1, ..., h +l> and image in level F. 

xF'-A i 

x: 
wi I ( X -A 

-h v 

-L 

e. 
:i. 

Fig. 5. 

C 1 
A 

A-N 

L 

Proof. By the definition of type (iii), o and w lie in the same unbounded path com- 
ponent, W, of Q -  C1 where Q is a copy of 17 in level A. Let h be an edge path in 
the letters {h~ 1, . . . ,h~ 1 } in W from o to w. Let k be the slide of ei along x A-L 
Then <h,k -1> is a loop in Q and is hence homotopically trivial in Q. Since C is 
above level A, Q misses C and this homotopy misses C. Furthermore, the slide of 
e i along x A-L misses C. Hence e i is homotopic rel{0, 1} to <x A-L, k, x -(A-L)> by a 
homotopy missing C. This implies ei is homotopic rel{0, 1} to <x A-L, h, x -(A -L)> by 
a homotopy missing C. But h misses C1 and lies in level A, so by Lemma 4.2 h can 
be slid along x r-A,  missing C, to say w i. Replace h by <x ~e-A, wi, x -(I:-A)> in 
<X A - L, h, x -(A - L ) ) .  

Lemma 4.13. I f  ei is an edge o f  type (iv), then ei is homotopic rel{0, 1}, by a 
homotopy missing C, to an edge path, <XP-~,ai, x-CP-F),bi, xP-F di, x-(P-L)>, 
where ai, bi and di are edge paths in the letters <hf 1, ..., h~l>, a i and d i are in level 
F', b i is in level F and the subpaths x -Oe-r) and x r - r  miss E. 

The proof of this Lemma is analogous to that of Lemma 4.10 and we outline it, 
using Fig. 6 for a guide. 

By the definition of (iv), 0 and w lie in different unbounded path components of 
Q - C 1 ,  where Q is a copy of I 7. Call these path components R and S respectively. 
R × S contains collection of pairs of vertices (ol, wl, o2, w2), ... such that deg(oi, wi) 
is >i. Select (oj, wj) such that x ~-A at oj and at wj miss E, x -(A-F) at oj and at wj 
miss E and such that j > _ A - F .  Since j>__A-F, there is an edge path b i in the 
letters {h~ :1, ..., h~ 1 } in level F such that <x -(A -r), bi, x a -e> has initial point oj and 
end point wj. Let y and z be edge paths in the edges {h~:l,..., h~l } from wj to w, 
and from o to oj respectively. Furthermore, select y to have image in the path com- 
ponent S and z to have image in R. Let g be the slide of ei along z A -F, di the slide 
of y along x ~-'4, and a i the slide of z along x r-A.  Each of these homotopies miss 
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C, since the first homotopy occurs below level A, and since y and z miss C1 and 
lie in level A. Let h be the slide of bi along x A-F. This homotopy has image below 
level A.  < h, y, g -  l, z> is a loop in Q and hence is homotopically trivial there. 
Corrlbining the homotopies of <x-tA-e) ,bi ,  xA-F> to h, h to <Z-i,g,y-l>, y to 
(X p-A,  di, X-(P-A)>, Z tO <X p-A, a i, X -(F-A)> and e i to <x A -P, g, X -(A-F)> a s  in Fig. 
3 gives the desired homotopy. 

If  ei is not an edge of type (i), (iia), (iib), (iii), or (iv), then it is either x, x - l ,  or 
an element {h~ :1, .. . ,  h~ l } that lies in level Q - N  or above, in which case we say ei 
is of  type (0). 

By Lemma 4.8, if ei is of type (0), e~ is homotopic rel{0, 1}, by a homotopy 
missing C, to the edge path <x r-L,  wi, x -(r-L)> where w i is a word in the letters 
<h~ :1, . . . ,h~ l > and image in level F. 

We have shown that each edge e i of a = (e l , . . . ,  eu> is homotopic rel{0, 1 } to an 
edge path <x e,/7, x t> where ]7 misses E (see Figs. 3-6). Furthermore if ei is of type 
(0), (iia), (iib), (iii) or (iv), then x k and x t can only pierce level A in a point missing 
CI. If ei is of type (i), x ~ and x t lie below level A. 

Replace each e i of of of  the form {h~l , . . . ,  h~ 1 } by the appropriate edge path of 
the form <xk, fl, x t> where fl misses E. The resulting edge path, call it ~ is 
homotopic rel{0, 1 } to a by a homotopy missing C. After eliminating edges of the 
form <x,x -~ > and <x-l,x>, we have an edge loop that can be represented as 
< w~, w2, . . . ,  Wp> where either 

(1) wi e {h~:l,..., h~ 1 } and has image in level F or F (which misses E),  or 
(2) Wi=X +'(P-F). 

Since no edge of a of the form x ±1 meets CI, our above analysis of the replace- 
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ment edge paths for edges of a implies: If w i = X  -+(P-F) and w i meets E, then w i 
pierces level A in a point missing C1. 

It suffices to show: 

Lemma 4.14. I f  W : X  p-F has initial point in level F and end point in level F, and 
w pierces level A in a point missing Cl, then w is homotopic rel{O, 1}by a 
homotopy missing C to an edge path missing E. 

Proof.  Let a be the initial point of w and b the end point of w. Let o be the point 
at which w pierces level A. 

b k 

J J 
> 

h 

> 

Fig. 7. 

F - A  
X 

' A  

d 

m 

F 

Choose an edge path f in the letters {h~:l,..., hn 1 } from a to a point d such that 
x p-F at d misses E. Let y be the end point of x A - r  at d. By sliding f along x A-F 
we obtain an edge path, g, in the letters {h~:l,..., h~ l } from o to y. Hence v and 
y are in the same copy Q of I?. Also o and y miss CI. If o and y are in the same 
unbounded path component, W, of Q - C 1 ,  then select an edge path, h, from o to 
y with image in W in the letters { h ~:1,..., h~l }. h is homotopic to g by a homotopy 
missing C (Q lies in level A and C is above level A). Since h misses Cl, it can be 
slid along x p-A to k by a homotopy missing C. Combining the homotopies of 
( x - ( A - F ) , f , x  A-F)  t o  g, g to h, and h to (x I:-A, k , x  -(r-A)) defines a homotopy 

rel{0,1} of w to ( f x ~ - V k - l ) .  The image of this homotopy misses C, and 
( f ,  x/~-r, k - l )  misses E as desired. If u and y are in different unbounded path com- 
ponents WI and I412 of Q - C, then by the definition of NI (<N) ,  W1 × W2 contains 
pairs of vertices (Vl, Wl), (v2, w2), :.. such that deg(vi, wi)>-i. Choose j>_A - F  and 
such that x •-A and x -(A-F) at v/and wy miss E. Choose edge paths ul and u2 in the 
letters {h~:l,..., h~ 1 } in WE and W1, respectively, from y to w/and v to uj, respec- 



Ends o f  groups with the integers as quotient 319 

z• b z 1 

u2 C Ul 

A-F 
X _ _  

,xA_ F 

a >f d 
> 
q 

Fig. 8. 

F 

F-A 
X 

A 
W .  

3 

"' A-N 
A-F 

X 

F 

tively. Let zl and z2 be the slides of  ul and//2, respectively, along x P-A. In an argu- 
ment completely analogous to that used in Lemma 4.13, we see x r -  F at a is homo- 
topic rel{0, 1}, by a homotopy missing C to <f, x r-F, zl, x -(r-F), q-i, xr-F, Z~I>, 
which misses E. 

Finally we note that the homotopy of  a to ~ was rel{0, 1 } and ~ is changed by 
homotopies rel{0, 1 } or by cancelling edges of the form <x, x- l> ,  or <x -1, x>. Since 
our base ray r is <x, x , . . .  > at ,(0), these homotopies are all rel. r. At this point we 
see H2(G : ~_G) is free abelian (see Section 1). We omit the proof that G is 1-ended 
and comment that the 1-endedness of  G can be shown by techniques similar to those 
already exhibited. 
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